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ABSTRACT

An S-map from a metric space X into a metric space Y is a

map f such that there exists a K: 0 ^ K i 1 and for all x and y e X,

d[f(x), f(y)] k[d(x, y)].
The set of S-maps, S(X), on a compact subset of a metric

space X under the compact-open topology and under composition

is a topological semi-group. Several theorems are given relating

the geometric structure of x to the fashion in which S(X) is topo-

logically and algebraically imbedded in C(X).

An S-homotopy on X (a compact metric space) is a homotopy

H X (R) I x such that H x 0 X is the identity map on X and H X

(R) l X is a contractive S-map. Also for all T e I, H X (R) T x is

an S-map. An S-homotopy on X e EN is regular if there exists a

coordinate set c and a Tg e I such that if T < Tg, then H X (R) T X

has the canonical matrix representation relative to c of a rotation

followed by a contraction. A subset of a metric space is a Regu-

lar Euler Set if it is compact, non-starlike, and supports a regu-

lar S-homotopy.

It is shown that an arc in E" is a regular Euler set if, and

only if, it is a generalized logarithmic spiral. This is a generali-

zation of a classical result obtained by Euler. Also, a proof is

given that a subset of E3 is a regular Euler set if, and only if, it

can be represented as the union of a family of logarithmic spirals.
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ON THE SHAPE PRESERVING EXPANSION
AND CONTRACTION OF OBJECTS IN E

by

P. Argentiero

Goddard Space Flight Center

INTRODUCTION AND DISCUSSION

It is clear intuitively that certain subsets of E2 can be continuously shrunk into themselves so
that the "shape" of the set is altered at no time during the shrinking process. A disk, for instance,
can be continuously shrunk into itself and yet remain a disk at all times. It is also easy to be-
lieve that some sets fail to have this property. Consider as an example the set below.

A continuous shrinking of such a set into itself would nee- _^^^^ ^^^^essarily alter its metric ratios and destroy what is intuitively ^^^^^M ^^^^^^k.
called its "shape." It is of interest to characterize sets which ^^^^^^ ^^^^^^A
have this special shrinkability property. To provide such a ^^^B ^^^^^B
characterization, intuition can be replaced by a mathematical ^^^^^ _^^^^f
description of a continuous shape preserving shrinking of a set ^^^^^B^^^^^^^^

The idea of continuous shrinking of a set X into itself suggests a homotopy from the identity
map x to some other map from X into X. The definition of the homotopy relation between two maps
is the following:

Definition 1: Let ^ and f^ be continuous transformations from a topological space X into a
topological space Y. Then f^ and f; are HOMOTOPIC, if there exists a continuous transformation
H X(R) I Y (I is the closed unit interval) from X I into Y such that H x(R)o-Y f^ and H X
(R) 1 Y f^. The map H X 8 I Y is called a HOMOTOPY from f to f,. The homotopy relation
is an equivalence relation (Reference 1).

A shape-preserving shrinking of a set X into itself will be defined as a homotopy H X (R) I X

such that H X 0 -Xis the identity map on X and for all t e I; the map H x (R) T-x is shape pre-
serving. The intuitive idea of the shape of a set X is intimately connected with the ratios of dis-
tances between points in X. Hence a rigorous treatment of shape must restrict itself to metric
spaces. Also, any map between metric spaces which preserves properties of shape must preserve
ratios of distances. In other words, a map f from a metric space X with metric d into a metric
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space Y with metric 5 is called shape preserving, or an S-map, if given any three points, z^, z^,

z
3
e X, then

g[^i)- ^2)] d^r ^]
s[f(z2). ^3)] ^. ^l

It is not difficult to show that this property is identical with the one incorporated in the following

definition:

Definition 2: A map f from a metric space x into a metric space Y is an S-map if there exists

aK, 05 K^l such that for any e X and y eX, d[f(x), f(y)] Kd[x, y] The number K is called the

scale of the S-map f. If K < 1, f is called a contractive S-map.

It will be shown that S-maps in E" are actually similarity transformations, which are defined

as maps that can be represented as a composition of a translation, an orthogonal transformation,

and either a dilation or a contraction. Such maps have received considerable attention in E". Here,

however, S-maps will be studied in the more general context provided in definition 2.

The concept of a shape preserving shrinking of a set into itself can now be formalized:

Definition 3: A subset X of a metric space is S-shrinkable if there exists a homotopy H X

f& l X such that H X (R) 0-x is the identity map on X, and H X (R) l X is a contractive S-map.

Furthermore, for every t e l, the map H x (R) T x is an S-map.

Definition 4: A subset X of E" is starlike if there exists a point p e X such that if x e x, the line

segment (p, x) is contained inX.

The starlike property, which later is generalized to arbitrary metric spaces, is closely re-

lated to the S-shrinkable property as demonstrated in theorem 1.

Theorem 1: Let X be a starlike subset of E". Then X is S-shrinkable.

The proof of theorem 1 will be provided in the next section. It is of interest to note that the

converse of theorem 1 is false; that is, an S-shrinkable subset of E" is not necessarily a starlike

set. A counterexample is provided by a subset ofE2; it is one referred to on other occasions.

Let the points in the plane have the usual polar coordinate representation, (r, 0), and consider an

arc X with parametric representation: X {(r, G) r,, e""^ 0 0g + a"1 1: o <, ^"}. X con-

tains the origin since we permit the parameter -t to assume the value ofco. This well-known arc

is called the logarithmic spiral. Intuitively it begins at a point (i-g, e J and spirals down indefi-

nitely into the origin. The positive number is called the twisting coefficient of the logarithmic

spiral and it governs the "tightness" of the spiraling. The logarithmic spiral is certainly non-

starlike and is now shown to be S-shrinkable. Define the required S-homotopy as follows: Let H

x(R)l-xbe such that for t e I, H X (R) t X maps the point (rg e-^ 0g +o-1 ^ onto [(rge-^"), ffy+a-1 (-C+at)].

2



Clearly H X (R) I X as defined is a homotopy. H X (R) 0 X is the identity map; and for any t, H X

(R) t x is the composition of a rotation by angle t and a contraction by factor e~at. Hence H X

t x is an S-map and the logarithmic spiral X is S-shrinkable.

John Bernoulli in the middle of the eighteenth century was aware of these shrinkability prop-

erties of the logarithmic spiral. He noticed that if the logarithmic spiral is contracted by any

factor, it becomes congruent to a subset of itself. This is just a rephrasing of the S-shrinkability

property. He also observed that this shrinkability property provides the logarithmic spiral with

its well-known hypnotic powers (Reference 2).*

It remained for Euler (Reference 3) to show that this special shrinkability property of the log-

arithmic spiral is in fact characteristic. That is, the logarithmic spiral is the only twice-

differentiable curve in the plane that is both non-starlike and S-shrinkable. The differentiability

assumption permitted Euler to use certain tools he had invented in order to establish his charac-

terization of the logarithmic spiral. This information motivates the next definition.

Definition 5: A subset X of E" is an Euler Set if it is compact, non-starlike, and S-shrinkable.

The logarithmic spiral is an example of an Euler set (it is compact because it contains the

origin); and, as Euler showed, among twice-differentiable curves in the plane, it is the only Euler

set. The aim here is to extend Euler’s classical result by deleting differentiability assumptions

and generalizing from the plane to E". The result will be a characterization of a general class of

Euler arcs inE" Finally, a characterization is provided of Euler sets in E3, and the significance

of this characterization is briefly discussed with respect to the shape-preserving shrinking or ex-

pansion of objects in space. Before these objectives can be accomplished, a thorough study of the

properties of S-maps is needed, the results of which will be useful in characterizing Euler arcs

inE" These results also have some intrinsic interest as a further elucidation of the algebraic

and topological properties of an important class of transformations.

PROPERTIES OF S-MAPS

There are some easily established but important facts about S-maps:

Theorem 2: If f is an S-map from M into M (a metric space) whose scale K is non-zero, f is

topological. If M is complete and K < 1, f has a unique fixed point.

Proof: The first part of the theorem is an easy application of the definitions involved. The

remainder of the theorem follows from the well-known result that a continuous contractive trans-

formation has a unique fixed point on a complete metric space.

’Bernoulli called these properties of the spiral "reproductive properties," thinking that such properties had mystical significance.
He wanted the logarithmic spiral inscribed his tomb with the words,"Eadem mutata urgo-though changed rise unchanged.*

3

L
______________________________^_^^



It is next necessary to establish relationships between geometric properties of subsets of

metric spaces (properties relating to the metric) and the fashion in which the set of S-maps on a

set is embedded in a certain function space. In what follows, the symbol X will always represent

a compact subset of a metric space. A common way to topologize the set of continuous functions

from X into X is given in definition 6.

Definition 6: Let C(X) be the set of continuous transformations from X into X. A metric on

C(X) is defined as follows: Let f, g e C(X). Then

d[f, g] SUp{d[f(x), g(x)] e x}

The topology induced by this metric will be called the metric topology on C(X).

Another frequently used topology on C(X) is given in the next definition.

Definition 7: Let K and u be subsets of X. Define the subset W[K, U] c C(X) of C(X) as follows:

w[K, u] is the set of all maps f e C(X) such that f(K) cu. The family of all sets w[K, u] where K is

compact and u is open forms a subbase for the compact-open topology on C(X).

The metric topology on C(X) is considerably simpler conceptually than the compact-open

topology on C(X). (It is routine to show that what is defined in definition 6 is a metric, provided X

is compact.) However, the compact-open topology has several convenient properties that make its

use almost unavoidable in some contexts. The property of the compact-open topology needed here

is the one which permits us to identify homotopies on X with arcs in C(X) and, conversely, to iden-

tify arcs in C(X) in an obvious fashion with homotopies on X (Reference 1). Fortunately the metric

topology on C(X) is equivalent to the compact-open topology on C(X) when X is compact (Refer-

ence 4). Hence the metric topology can be used on C(X), while at the same time all the convenient

properties of the compact-open topology are available.

Definition 8: Let S(X) represent the set of all S-maps from X into itself. Clearly S(X) cC(X)

and hence S(X) can inherit the topology of C(X). S(X) also has an algebraic structure, namely func-

tion composition. Certain relationships will be obtained between geometric properties of X and the

topological and algebraic structure of S(X).

Theorem 3: S(X) with the algebraic and topological structures defined above is a topological

semigroup.

Proof: Because S(X) is closed under composition, the result will follow if it is shown that

C(X) under composition is a topological semigroup, u^6 will represent an epsilon neighborhood of

x in X. If f is a map on X, u,6 will represent an epsilon neighborhood of f in C(X). A symbol f(x)

is an element of X, namely the image of x under f.

4
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To prove that C(X) is a topological semigroup it must be shown that composition in C(X) is

continuous. This is equivalent to showing that for any neighborhood U^6 f, g eC(X) (fg of course
represents composition of f with g) of fg there exist neighborhoods u^ and u sg of f and g re-
spectively such that if f’ e u,8 and g’ e u e then f’ g’ e u;6

Let e > 0 be prescribed and let x ex. There exists a neighborhood V s of radius S which can
be chosen independently of x, because X is compact, so that f[Ug8^^ cv!es/w Now if f eU^2 and
g’ euj’ then g’ (x) eUg8^; and also, because d[f, f] < e/2, then f [u^^] cu^. Thus f g’ (x)

^f^cx) and d^f’ gl (x)’ ^(.^ < e- Because ex was arbitrary and S was chosen independently of

x, then f’ g’ e U^ Hence composition is continuous in C(X), and by definition this makes C(X) a
topological semigroup under composition.

Theorem 4: Let {f^} be a convergent sequence of S-maps on a compact subset X of a metric
space. Then, if K^ represents the scale of the n* element in the convergent sequence, {f^,},
lim K K exists.

Theorem 5: S(X) is a closed subset of C(X).

Proof of theorems 4 and 5: Let {f^} be a sequence of S-maps converging to f e C(X) It will
be shown that e S(X). For any two points e X and y e x,

d[f(x), f(y)] H^d[f^ (x), f^ (y)] limK^ d[x, y] d[x, y] HmK^

Hence

limK K

exists and thus

d[f(x), f(y)] Kd[x, y]

Since the points and y were arbitrary, this proves theorems 4 and 5.

Theorem 6: S(X) is complete.

Proof: Because X is compact, C(X) is complete. Hence S(X) as a closed subset of a complete
space is complete.

It is now convenient to extend the definition of the starlike property given in definition 4 to
arbitrary metric spaces.
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Definition 9: A subset Y of a metric space is starlike if there exists a p e Y so that, for every

x e Y, there is an S-map f from the closed interval [0, a] (a dependent on x) into Y such that f(0) p

and f(a) x.

There will be no need to distinguish the sense of the word "starlike," as used in definition 9,
from the sense of the same word as used previously in definition 4 since it can be readily shown

that the two definitions coincide in E". Let Y be a set in E" which is starlike in the sense of defi-

nition 4. Then there exists a p e Y such that if x e Y the line segment

(P, x\ [p(l- t/a) + t/a, a d[x, p] 0^ t <_ a]

is included in Y. Now it is easy to construct an S-map f (in fact an isometry) from the closed in-

terval [0, a] a d[p, x] into Y such that f(0) p and f(a) x. For o^t^ a, define

f(t) p(l t/a) + t/a

where the addition is, of course, vector addition. Clearly f(0) p and f(a) x. It must also be

shown that f is an S-map. Let t^, t^ e [0, a] t^ < t^. Then

4^2)’ ^l)] \\P- P ~^ + X~^ -P +P ^ ~^\\ l ^ 1!) ^ ^ ^ ^. S]

Thus is an isometry and hence an S-map. Next it is shown that if Y, a subset of E", is starlike

in the sense of definition 9, it is also starlike in the sense of definition 4. If Y is starlike in the

sense of definition 9, there exists a p e Y such that for any x e Y, there is an S-map f from an inter-

val [0, a] into Yand f(0) p and f(a) x. It can be shown that Y is starlike in the sense of defi-

nition 4 by showing that

f[(0, a)] (P, x)

Let t e (0, a). Then since (0, a) is an interval and f is an S-map,

d[f(0), f(t)] + d[f(t), f(a)] d[f(0), f(a)]

This implies that f(t) e (0, p) and hence f [(0, a)] c (p, x) But since f(0) p and f(a) x, and

since the image of (0, a) under f must be connected, f[(0, a)] (p, x) the proof is complete.

Notice that with the extension of the starlike property to arbitrary metric spaces, the defini-

tion of Euler sets provided in definition 5 can be extended. An Euler set in an arbitrary metric

space is compact, S-shrinkable, and nonstarlike in the sense of definition 9. Several other

6
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properties usually defined for linear spaces can just as easily be extended to arbitrary metric

spaces. For instance, a subset Y of an arbitrary metric space can be called convex if for any two

points x, y Y, there exists an S-map, f, from the closed interval [0, a] into Y such that f(0)

and f(a) y. This can be shown to be a valid generalization of the convexity property as usually

defined in a linear space. Some interesting properties of convex sets in metric spaces can then be

proved. For instance if the metric space is complete, a subset is convex if and only if it has the

midpoint property (Reference 5). A generalization of this result can be found in (Reference 6).

Theorem 7: If X is a starlike subset of E", S(X) is arc-wise connected.

Proof: Since x is starlike there exists a point p e X such that if e X, the line segment (P, x)
is wholly contained in x. It is shown that if f is an S-map onX, then there is a closed arc (a

homeomorph of the interval) in S(X) with f as one endpoint and the constant map on p as the other

endpoint. This will be sufficient to show that S(X) is arc-wise connected. This arc is constructed

as follows. For t e [0, l] define

g, (x) (l t)x + tp

where the addition is vector addition. Next, g^ is shown to be an S-map. Let x, y e X. Then

d[g, (x), g^ (y)] ||(l t) x+ tp- (l t) y- tp|| || 1 t (x y) || (l t) d[x, y]

Since x and y were arbitrary, g^ is an S-map, and hence g^ e S(X). Define F( g^ f (f^ is the

composition of g^ with f). Since f is an S-map, so is f^. Now the map <x[(0, 1)- s(X)] defined

by a( t) is continuous since

d[f, f, 1 SUP[|| (l tj f(x) t, p- (l t,) f(x) + t, p|| e x]

SUP[|| (t, t^) f(x) + (t^ tj p|| ex]

and clearly this number can be made as small as desired by making t^ sufficiently close to t^.
Also notice that o.(0) f and a(l) {constant map on p}. Hence the proof is complete.

In this proof it is interesting to notice the role played by the properties of the point p e x. In

defining g^ (x) as

g, (x) (l t) x + tp

success in defining a map on x was tacitly assumed. In other words, it was assumed that

for any t e (0, l) and any x e X, the point (l t) x+ tp was a member of X. This would not

7



necessarily be true if p e X were not the special point defined in the beginning of the

proof.

With theorem 7 established, a proof of theorem 1 can now be provided. The properties of the

metric topology on S(X) had been used in theorem 7. But since X is compact this topology is equiv-

alent to the compact-open topology. As mentioned before, in the compact-open topology arcs in

the function space may be identified with homotopies on the underlying space X. Hence there exists

an arc from the identity map on x to a contractive S-map and the arc lies in S(X). But this arc

obviously defines an S-homotopy. Hence X is S-shrinkable if x is a starlike subset of E". The

following theorem incorporates an interesting fact about contractive, S-maps on a complete

Riemannian space. A proof is found in Reference 7.

Theorem 8: A complete Riemannian space which supports an into, contractive, S-map is

Euclidean.

The assumption of completeness cannot be deleted from the statement of theorem 8. It is

possible to construct into, contractive, S-maps on noncomplete, non-Euclidean Riemannian spaces

(Reference 7).

The construction of machinery necessary to establish an interesting mapping theorem on C(X)

when x is a starlike subset of E" can now be initiated.

Lemma 1: Let f be an S-map on X and choose e > 0. Let g be another S-map on X such that

g eU^ c S(X) Then

Kf -K, < ^r

where M is the diameter of X.

Proof: Let g be an S-map such that g e u^, and let and y be arbitrary elements of X. Then

d[f(x), g(x)] < e and d[f(y), g(y)] < e. Writing

d [g(x), g(y)] <_ d[g(x), f(x)] + d[f(x), f(y)] + d[f(y), g(y)] ^ 2e + d[f(x), f(y)]

leads to

|d[g(x), g(y)] d[f(x), f(y)] < 2e

Since f and g are S-maps, then

|Kg d[x, y] K, d[x, y] < 2e

8
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This implies

l^ -^l < d[?y^

Let M be the diameter of X. Since X is compact there exist points x’ and y’ such that

d[x’, y’] M

Since and y were arbitrary points of X, let x’ and y y’. In that case

l^ -^l < ^
and the proof is complete.

Lemma 2: Define Sg c S(X) to be the set of S-maps of scale K in S(X). Then sets of the form

us,
K^<K<K^

are open in S(X).

Proof: Let

us,
K^<K<K^

It must be shown that there exists an e > 0 such that

eU/ c US^
K^K<K,

This will establish the result. Since

f eUS^
K^<K<K^

then K^ <K( <K^ where K^ is the scale of f. Now choose an e > 0 such that

K, + ^ < K,

9



and

2e
K! < ^ ~M

where again M is the diameter of X. Then, if g e u^, from lemma 1

|K, -KJ < ^
Hence

KI < K, -^ < K^ < K, + -^ < K,

Therefore

g e U S^
K^<K<K^

But was an arbitrary element of U^ Thus

U^ cUS,
I^<K<K^

Lemma 3: If X is a starlike subset of E", then for any K such that 0^ K5 1, there exists an

f e S(X) such that K, K where K( is the scale of f.

Proof: If X is starlike there exists a point p eX such that for any x e X the line segment

(p, x) {p(l t) + x(t) t e [0, 1]^

where the addition is vector addition. Let tg e [0, 1] and define on X the function:

a^ (x) p(l- tj + tg, xe X

This is an into function on x because of the special properties of the point p. Also o^ is an S-map

on X. To see this notice that

dfa^ (x), a^ (y)1 || p (l tj + tg p (l tj y tj || tn (x-y)|| t,, d[x, y]

10



Hence c^ is an S-map on X of scale tp. Since tg is any point in the unit closed interval [0, l], the
proof is complete.

Define s^ as the set of S-maps of scale K in S(X). Let {Sg}g be the collection of such subsets.

By the natural transformation T from S(X) into {s^}g, is meant the transformation T(f) Sg {Sg}g
is topologized by choosing the coarsest topology which makes the natural transformation continu-

ous. This topology is the well known quotient topology induced on {Sg}g by the equivalence relation

onS(X), f g if and only if f has the same scale as g. See Reference 8 for relevant properties of

this topology. Also an algebraic structure is placed on {s,Jg by stating that

K K K
"1 "2 "1-2

Lemma 4: Let X be a starlike subset of E". Then with the above defined algebraic and topo-

logical structures, {Sg}g Is a topological semigroup that is isomorphic to the closed unit interval

under multiplication; that is, {Sg}^ is a one parameter topological semigroup.

Proof: Let X be a starlike subset of E" and define a function

f[{S,}, [0, 1]]

as f(s^) K. The map is clearly a one to one homomorphism. The starlike quality of X and

lemma 3 insures that f is onto. Lemma 2 insures that is continuous since it shows that the in-

verse images of open sets under are open. Since f is a one to one onto homomorphism, it is an

algebraic isomorphism.

To prove that is also topological notice that in view of lemma 2, sets of the form

"^ ^^K
K^<K<K^

are open in {s^}g. Furthermore, these sets form a basis for the topology on {s^L. Hence f is a

continuous transformation which maps basis elements of {Sg}g onto basis elements of [0, l] and

thus is open. So f is topological, and the proof is complete.

Lemma 5: If X is a starlike subset of E", there exists a continuous transformation from S(X)

onto [0, 1]

Proof: The topology on {s^}^ is one which makes the natural transformation from S(X) onto

{s^}^ continuous. In the proof of lemma 4, the existence of a topological transformation f was

established from {Sg}^ onto [0, 1] thus the composition of the natural transformation with f is a

continuous transformation from S(X) onto [0, l]

11

[



The following mapping theorem can now be stated.

Theorem 9: If X is a starlike subset of E", there exists a continuous transformation from C(X)

onto [0, l]

Proof: According to theorem 5, S(X) is closed in C(X). So apply Tietze’s Extension Theorem

(Reference 1) to the result of lemma 5.

Definition 10: Two maps f and g from x into X are S-homotopic if there exists a homotopy

H XI X such that H X g> 0 X f and H X(R) l x g and for all T e I, H X T X is an S-map.

The next result is an application of theorem 3 and it has a geometric interpretation of some

intuitive meaning.

Theorem 10: Let the identity map on X be S-homotopic to a contractive S-map on X. Then the

identity map is also S-homotopic to a contractive S-map whose range is of arbitrarily small

diameter.

Proof: According to theorem 3, S(X) is a topological semigroup under composition. Also,
since the topology used on S(X) is the compact-open topology, the S-homotopy classes of S-maps

are precisely the arc-wise connected components of S(X) (Reference 1). Thus since composition

is continuous, if f, g e S(X) are S-homotopic, so are f2 and g2. To see this notice that the map

T[s(X) -^S(X)] defined as T(f) f2 is continuous. Hence it preserves paths. Thus if the identity

map l on X is S-homotopic to f e S(X) it is also S-homotopic to f" where n is any positive integer.

Now let f be a contractive S-map on X. Let p e x be the fixed point of f (theorem 2). The point

p is also the fixed point for f". For any x e x,

d [f" (x), f" (p)j d[f" (x), p] K^ d[x, p] K^" d[x, p]

So if M is the diameter of X, then K(" M is a bound on the diameter of the range of ^. But since f is

contractive, K( < 1 and it can be insured that the range of ^ has as small a diameter as desired

by picking a sufficiently large n. Hence if the identity map on X is S-homotopic to a contractive

S-map f, it is also S-homotopic to f" whose range can be made arbitrarily small by choosing a

sufficiently large n. This completes the proof.

Theorem 10 has the following intuitive meaning. It says that if a compact set in a metric space

can be shrunk at all to a smaller subset of itself in a continuous fashion which preserves shape,

then it can be continuously shrunk to as small a set as desired in a manner which preserves its

shape. A necessary condition for S-shrinkability is now provided in arbitrary metric spaces.

Definition 11: x is curled if there exist two points x, y e x and a positive number e > 0, such

that if x’ eU/ and if y’ eUy6, then d[x’, y’] ^d[x, y]
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For example the set shown in the introduction is curled. So is the union of two closed disjoint
line segments. In fact, every compact, disconnected subset of a metric space is curled.

Theorem 11: The property of being curled is preserved under S-maps.

Proof: The proof is a straightforward application of the definitions involved.

Theorem 12: Let X be S-shrinkable with S-homotopy H X(R) I^X. There exists a tp e l such

that H x(R) tg- x is an isometry, and if t > tg, H x(R) t x is a contractive S-map.

Proof: Let the map f^ represent H X (R) t x. Define the set ft c I as the set of all T such that

f^ is an isometry. /S is bounded and hence has a least upper bound tg. Also tp < 1 since fi is by
definition of an S-homotopy a contractive S-map. All that needs to be shown is that tg e /3. Assume
that tg e/3. Then ft is a contractive S-map. But since tg is the least upper bound of /3 and be-

cause of the continuity properties of the homotopy H X(R) I X, a sequence of isometries f,; can be

constructed converging to f^ a contractive S-map. (H x(R)l -X defines a continuous transforma-
tion from I into C(X).) But a convergent sequence of isometries in C(X) must converge to an

isometry. This is a contradiction. Hence ty e/3, and the proof is complete.

In view of theorem 12, given an S-shrinkable set X (X compact), no generality is lost if it is

assumed that there exists an S-homotopy, H X(R) I -X, such that f^ for 0 < t is not an isometry. To
show this, let H X(R) I X be any S-homotopy on x. According to theorem 12, there exists a ty such
that ff is an isometry on X and if t > tg, f^ is contractive. Consider the homotopy H X(R) [tg, l] x
obtained by restricting H to x(R) [tg, l] An isometry on a compact subset of a metric space is

onto. Hence ff has an inverse f ,~1 which is an isometry on X. Define a new homotopy G: x(R)[tg, l]-x
as G( f f ^’ where G^ G: X(R) t x, t e [tg, l Notice that G^ is the identity map on X and

for e[tQ, l] G^ is an S-map on X. A reparameterization of G such that G^ becomes Gg will result

in an S-homotopy on x such that the only isometry in the homotopy is the identity map Gg.

Theorem 13: If X is curled, it is not S-shrinkable.

Proof: Assume to, the contrary, that X is curled and S-shrinkable. Then there exist points

x ex andy e X and a number e > 0 such that if x’ eu/ and if y’ eUy6, then d[x’, y’] >d[x, y]. Let
H X(R) I X be the S-homotopy on X. Again letting the symbol f^ represent H t(R) t-x, t e l, a

tg e I can be named such that if 0 < t < tg, then

^o. f.} < ^
where the metric in question is of course the one defined in definition 6. But fg is by definition

the identity map on X. Hence ft (y) e Uy6 and f^ (y) e Uy6 for 0 < t < tg. But by theorem 12 we can

13
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assume that f^ is a contractive map of scale K^ < 1. Hence

d[f^ (x), ft (y)] K^ d[x, y] < d[x, y]

But this is a contradiction since f^ W eV^ and f^ (y) eUy6. Hence no set X can be both curled and

S-shrinkable.

Corollary: Let V be an S-shrinkable, compact subset of a metric space. Then V is connected.

Proof: Assume to the contrary thatv, an S-shrinkable, compact subset of a metric space, is

not connected. Let v^ and V;, be sets of a separation ofv. The sets v^ and V;, must also be com-

pact. Define the distance between v, andv^ as

d[v^, V,] INF[d[x,, x,]; x^ e V^, x. evj

Then

d[V^, Vj S 7’ 0

and furthermore there exists x/ e v, and x^’ ev;, such that

d[x/, x;j 8

Now let u s/2 be an open neighborhood of x/ of radius 8/2. Notice that

V ^^r.Vc V
"1

Let u s^2 be an open neighborhood of x^’ of radius 8/2. And again we have
"2

U 8,’2 nVc V,
"2

Now let

x/’e U ^^V
x^

14



and

x," eU 5,/2 r,V
x^

Then x^" e v^ and x^" eV^ and

d[x/’, x;] ^ S d[x^’, x;]

This indicates according to definition 11 that V is curled. But by theorem 13 this implies that V

cannot be S-shrinkable which is a contradiction. Hence V is connected.

S-MAPS IN E"

It will be shown in this section that by using the linear structure of E" a convenient represen-
tation of S-maps in E" can be obtained. With the aid of this representation a characterization is

possible of a general class of Euler sets in E2, and enough information can be obtained on the

structure of Euler sets in E" to obtain a significant generalization of Euler’s characterization of

Euler arcs in E2 to a similar characterization inE"

Let f be a contractive S-map on E" with scale K < 1. Define the coordinate set C as an ortho-

gonal coordinate set whose origin is the fixed point of f. Define the maps f, and f^.as follows:

fl (x) T ’’0^

and

f;, (x) Kx

where is a vector with components given relative to C and the multiplication indicated is of

course scalar multiplication of a vector. Notice that for vectors and yin E",

d[fi (x), ^ (y)] ^ d[f(x), f(y)] ^ [Kd(x, y)] d[x, y]

Hence f^ is an isometry which has a fixed point at the origin of the coordinate set C. This implies

that relative to the coordinate setC, ^
is an orthogonal transformation. The map f, is clearly

a simple contraction with contractive coefficient K. Since f f^ f^, we have proved the next
theorem.

15



Theorem 14: Let f be a contractive S-map on E". Then with the proper choice of coordinate

set f can be represented as a composition of an orthogonal transformation and a contraction with

contractive coefficient K, the scale of f.

Theorem 14 permits the following useful matrix representation of an S-map on E".

Theorem 15: Let t be an S-map on E" with scale K < 1. Then there exists M numbers ^, ^, ^’M^n/2 such that with the proper choice of coordinate set, the matrix of f has the representation

/+/-K r^\/ +/-K-. ^ \
+/-K

vo " " J
where

( K cos 4’i K sin(^ ^ai -K sin^ K cosi^

for i.< M, with zeroes in all other places. The numbers 4’;, satisfying 0 < <p; < 2-rr are called the

rotational coefficients of f and are nonzero.

Proof: It is well known (Reference 9) that an orthogonal transformation on E" has associated

with it a set of M nonzero numbers <^i, ^, ^ such that with proper choice of coordinate set

it has the matrix representation

( "" \
\0 -. )

where

( cos (p. sin <^
sin 4>- cos 4>^

for i<_ M, with zeroes elsewhere. This result together with theorem 14 proves the theorem.

In characterizing Euler arcs in E", Euler considered only S-maps which had their fixed points

at the origin of a fixed coordinate set C. In effect this implied that there exists a single coordinate
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set for E2 in which all S-maps had the convenient representation of theorem 15. Hence Euler
actually characterized a certain subclass of twice differentiable Euler arcs in E2. An equivalent
assumption in E" would be to assume for each S-homotopy H x (R) I x on X c E" the existence of a
coordinate set c such that for t e i, f, H x(R) t -x has the representation of theorem 15 relative
to c. This restriction on S-homotopies is somewhat stronger than necessary. However, it is
necessary to restrict S-homotopies in a somewhat weaker fashion.

Definition 12: An S-homotopy H X(R) I X on X c E" is regular if there exists a coordinate set
C and a tg e i, o < tg such that if t < tg then the S-map f^ H x(R) t x has the representation of
theorem 15 relative to C. An Euler set X c E" is a regular Euler set if there exists a regular S-
homotopy on X.

Intuitively speaking a regular S-homotopy on a set X represents a shrinking of X such that at
least in the beginning of the shrinking process a specific point in X remains fixed (the origin of the
coordinate set c), and the rotations which occur are restricted to take place on M specifically as-
signed two-dimensional subspaces. This condition rules out some pathological situations which
are very difficult to consider. This condition also insures that in a sufficiently small neighbor-
hood of the identity map in S(X), the S-maps in the S-homotopy have the same number of rotational
coefficients. Another way of viewing this condition is to observe that it permits an algebraic char-
acterization of the S-maps in the beginning of an S-homotopy in terms of their matrix representa-
tion relative to a given coordinate set, rather than simply a geometric characterization as provided
in definition 2. Notice also that in E2 this condition reduces to an insistence that the S-maps in
the beginning of the S-homotopy have the same fixed point. Hence in E2, the regularity assump-
tion is somewhat weaker than the assumption Euler applied. At this point the following convention
is adopted. It is assumed that if X is a subset of E", it is not contained in a subspace of dimension
lower than n. Clearly no loss of generality is incurred by this convention, and it is a convenience
in the proof of the next theorem.

In the case of a regular S-homotopy, the S-maps in the homotopy in a sufficiently small neigh-
borhood of the identity map can be given a representation somewhat simpler than that of theorem 15.

Theorem 16: Let x be a regular Euler set in E" with regular S-homotopy H X(R) I -X. Then
there exists a tg e I and a coordinate set c such that if t < tg, then the S-map f^ H X(R) t x has
the representation relative to C as

( -.. 0\
lo .. )

17



where

/ K^ cos^^ K^ sin^ A
ei \^ sin^ K, cos<^y

i_<M, and 0 <<^ < 2-n- are the rotational coefficients of f^.

Proof: Let X be a regular Euler set with regular S-homotopy H X (R) I X. By theorem 15 and

the definition of a regular S-homotopy, there exists a coordinate set C and a tg e i such that if

t < tg then f^ is represented relative to C as

/+/-K- \/ +/-Kt \
+Kt

el

\ e2 /\ V
where

/ K, cos<^ K, sin^ \
ei ^-K. sin^ K. cos^ ,y

i^ M, and 0 <<?’>; < 27r’ ^M are the nonzero rotational coefficients of ^ The difference between

this representation and the one in the statement of the theorem is the possibility of negative signs

appearing in front of K^ in one of the first L diagonal elements; L n 2M. Assume that for every

f e I there exists a t < t’ such that ^ has a-K^ in one of its first L diagonal elements. We search

for a contradiction. Assume that the i^diagonal element 5L in the representation of f^ is- K^.
Let be in X and let x^ be the 1th coordinate of x. Then the 1th coordinate of ^ (x) is K^ x;.

Hence the distance between and f^ (x) is at least as great as (l +Kj |xJ Let b^ max [|x; x;

is the 1th coordinate of e x1. The number b^ is the maximum 1th coordinate over all points in

X. Let b min[b^ 5 LJ Since it can be assumed that X is not contained in a subspace of E" of

dimension less than n, then b > 0. Let {t^} be a sequence of points such that l^ t^ 0 and such

that for every the map, f^ has at least one K^ is the first L diagonal places in its representa-

tion relative to C. Then the ’distance between f^ and i, the identity map on X in the metric on

S(X), is at least as great as (l + K^ \b. As approaches infinity, this term approaches 2b. But

this is impossible since as approaches infinity f;. ^ construction and by the continuity proper-

ties of a homotopy must approach the identity map ’i in the metric of S(X) and hence the distance

between f and i must approach zero as approaches infinity. Hence it is concluded that there

exists a tg’such that if t < t g, then f( has the representation stated in the theorem.

The usefulness of theorem 16 can be demonstrated by switching from rectangular coordinates

on E" to generalized cylindrical coordinates. Let X be a regular Euler set in E" and let H x I -X
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be its regular S-homotopy. Then there exists a tg e I such that for t < tp there exists a coordinate

set C such that has the representation of theorem 16 relative to c. Hence on an L dimensional

subspace of E", f^ is a simple contraction of contractive coefficient K^. On each of M two-dimensional

subspaces, f is represented as a rotation and a contraction. On the first two-dimensional sub-

space in question, f is represented as a rotation through angle <^>^ ^ composed with a contraction

of contractive coefficient K^. On the L dimensional subspace on which f^ is a contraction, ordinary

rectangular coordinates are used to specify the projection of a point p into this space. In each of

the M planes on which f is a rotation composed with a contraction, ordinary polar coordinates are

used to specify the projection of a point p on the plane in question. What is achieved is a set of

cylindrical coordinates of a general point p e E"

p (z,, z,, z,, r,, 0,, r,, ^, r,, 0j

which has the following property for t < t g:

f, (p) (z^K,, z,K,, z^, r^, 0^^, r^, ^ +<^, r^, ^ + ^)

Hereafter, when speaking of a cylindrical coordinate set relative to C, it is this cylindrical co-

ordinate set that is intended.

REGULAR EULER SETS IN E"

The structure of regular Euler sets in E" can now be studied. In what follows, X is a regular
Euler set in E" with regular S-homotopy H Xial -X. There exists a coordinate set C and a tg e I

such that if t < ty, then f has the representation of theorem 16 relative to C. The nonzero num-

bers ^i t> ^2 ^m are tne rotational coefficients of
^. Notice that C can always be choosen

such that <p^ ^, i^m, approaches zero as t approaches zero. The scale K of f^ approaches one

as t approaches zero. Define the function

-nK^
g. (t) -^-7

i^ m. Derivations of characterizations of various projections of an Euler set into orthogonal sub-

spaces will be performed. With the aid of these characterizations the regular Euler arcs in E"

will be characterized and thus generalize Euler’s result into E". This will be accomplished by

characterizing the projections of x into various orthogonal subspaces in terms of the behavior of

the functions g; (t), i^m, as t approaches zero.

Let pg be a point in X. Relative to pg and for every t < tg the following sets are defined:

^t {^ (Po) 0 -^ "^c0},where F(" represents the composition of f^ with itself times; and with
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cylindrical coordinates relative to C, for every

t < tg, y, f(zi, z,, ^, ^, 0,, r,, 0,, r,,, @j Zi z^ e-^, z, z^ e-^ z^

^.o ^^i ’l.o 6^- 0! ^ rf^ ^ --2,0 ^. ^ ^,0

-fe^. ^, -n,,0 ^, ^ ^.O At ^ O^^"}-
where

(zl,0 Z2,0 ^.O’ ^.O’ ^l.O’ ’"^O’ 02,0 ’’m.O’ em.o}

are the cylindrical coordinates of p;, relative to C. Notice that ’/’( <: X for t e I.

Theorem 17: For every t < tg, s^ c 7^.

Proof: Let p e -^ Then there exists an n such that p ^" (Po)- The cylindrical coordinates

of p relative to C are

P (^.oKt". ^,0^". ^.0^^ -l.O1^!"- 0!^ ^^,!. ’-S.O^- ^O ^^.t- ^.O ^- ^.O ^^.t)-

Now let

L’ -n-^nK^

(L’ is positive since K^ < 1). Then p can be represented as

4>
p fz^ e-1-’, z^o 6"1’’’ ^.o 6’1’’- ^.o 6"1’1’ ^i.o f^ 1-’- ^.o ^’ e2,o

<t> ^^I^ 1-’. ’-m.O e-L’- ^,0 ^fl^ 1- /

This proves that p e 7^. But p was an arbitrary point of 0 Hence -^ c 7^

Theorem 18: For any e > 0, there exists a t’ < tg such that if t < t’ then for any point p e 7^

there exists a point p’ e’/’i such that ritp. P’l <
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Proof: Define a map r from [0, co] to Y( as

r(-6) ^ e-^, z, e--^, z^ e-^, r^ e-^, <^<, ^ ^, r, e-^, 0^

^- ^ --& ^ -^ A-in Kt ’’- ’’m.o 1’ m,o ^nKt ’’-;

This is in fact the parameterization map used to define the arc 7^ Let p be any point on 7^, t < tg.
Then there exists an L’ such that T(L’) p. There exists an n such that

-n’nK^ L’ .< Cn + l)-6nK^

But

T(- n-tnKj p^ e ^^ r(- (n + l)^nKj p, e ^
In fact p^ f^" (P()) and p^ f^"’’1 fpg). It must be shown that, assuming t is sufficiently small,

d[p,, p] ^ d[p,, p,].

The distance between the projections of p^ and p into the L dimensional subspace in which

is a contraction, is seen to be

fr / ^ K, -\i2 r / "-t" K, .\i2^1,0 (0 -e ^J - ^,o (e ’- e ^J
e- ^ ^ e-’ ^J^T^^TTT-^T

By similar reasoning it is seen that the distance between the projections of p^ and p, on this L

dimensional space is

e- ^ ^ -e^"^ 1’1! ^^) 2 ^^.)2 - ^)2

Hence in this L dimensional subspace the distance between the projections of pi and p^ is greater

than the distance between the projections of p^ and p in this space.

A similar result is proved for the m two-dimensional subspaces on which f^ is a rotation

composed with a contraction. Consider the distance between the projections of pi and p on the 1th
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such plane, i^m. The ordinary cosine law gives this distance as

J’\2 / -tn K,\ -L’+n -tn K ’1’’- f, f \\\(-i.t 6 -) ^i.t 6 t) -r^e ^ ^n K, (L’ -n^KJJ
and the distance between the projections of p^ and p^ on this two-dimensional subspace is

2 l^2
^ (n+ll^n K. V / n’tn K.\ (2n+l)’Cn K

[(^.^ t) ^i.t 6 t; i2! 6 ^^i.tj

Since

-n-tnKt L’5 (n + 1)-tn K^

it is seen that the expression for the distance between the projections of p^ and p, on this sub-

space is greater than the corresponding expression for the distance between the projections of p,

and p provided ^^
is such that 0 5 <^, t^-rr/2. This follows because

^i.t ^ ^i.t (L’ n-tnKj/^nK^

and because the cosine function is monotone decreasing in the interval [0, rr/2]. Let t; < tg be

such that if t < t
^, then 0 5 <p;

^ 5 77/2. If t < t then for any p e 7^ there exists an L’ such that

p T(L’ and there exists an such that

-n^nK^ L’ <_ (n + l)-tnK^

Defining

PI (n-tnK^)

and

p^ r(- (n + l) ^nKj

it has been proven that the distance between the projections of p^ and p^ on the L dimensional sub-

space on which f^ is a contraction is greater than the distance between the projections of p^ and

p on the same subspace. Moreover, the same thing is true on each of the m two-dimensional sub-

spaces on which f^ is a rotation followed by a contraction. Since the orthogonal sum of these
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subspaces is E" this proves that

d[pi, P,] ^ d[p^, p]

But

d[p,, p,] d[^ (p,,), f -^)] d{f^ (p,) f [f^ (?)]}.
Given e > 0, choose t

^
such that if 13 < t

^, and if t < t
^, then f is within an e -neighborhood of the

identity map I in S(X). Then

d{f<" (Po). ft [ft" (Po)]} <

This implies that d[p^, p] < e But p^ e </^ c x. This completes the proof.

Now consider a sequence {t } such that lim t 0. We focus attention on the sequences

l^i ^j}} where g, (t) -tnKt/^
^

Let 1. Then we distinguish three possibilities:

1. The sequence ^g, (t^ )> is an unbounded set of points.

2. The sequence ^g, (t^ )l is a bounded set of points with at least one nonzero limit point.

3. The sequence -fg^ (t^ )l is bounded and has just one limit point at zero.

If the first case holds, a subsequence {t ^ can be defined such that

lim g (t ’)

If the second case holds {t,’} can be defined as a subsequence of {t J which has the property that

^l ^i’) a! ^
If the third case holds {t/} be simply defined as {t^} {tj’}, and thus

limg (t ’) 0
j-,00
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In the same fashion, the sequence sg^ (t/)^ can be considered and a subsequence, {t."} of {t ’},
can be derived which would have the property that either

}^ (t.") -,

^ (t,") a, ^ 0

or

^B, (t;) 0

Proceeding in this fashion until the m functions g; (t), i <_m, have been exhausted, a sequence is

obtained which again can be called {t^} and about which can be stated the following theorem.

Theorem 19: There exists a sequence {t J, 1 im t 0 and integers m’, m", 0 ^ m’ .< m" <_ m such

that with the proper reindexing of functions g; (t), i^m:

^2 g- (’i i ’"
for i <.m’;

".S^ ^i)

for such that m’ < <_ m"; and

,42 g! ^i)

for i such that m" < i ^m.

Now let the integer m" be defined as in theorem 19. The following theorem can be proved.

Theorem 20: There exists a set of m- m" orthogonal two-dimensional subspaces on each of

which the projection of x is a disk.

Proof: Let the m functions g, (t) be reindexed as in theorem 19. Let i be such that m" < i <_m.

Consider the two-dimensional subspace E^2 on which the rotational coefficient <^ is defined. For
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t < tg, the projection of the arc y^ on this space is the arc parameterized as

{(-, 5) r r, , e-^, 0 0,^ ^--6 0 ^^4

We can reparameterize this arc and express it in terms of the function

-CnKt
gi (t) ^T7

as

f(r, 0) r^ e^ ’^. e 5,,0 -^S O^S^col

The reparameterization is accomplished by setting

s g ^ Ct)^

On the same two-dimensional space E^2, define the set

{(r, @) r r^g, 0 0,^ +S O^S^co}

What has been defined is a circle centered at the origin and passing through the projection of pp,
the arbitrary point in X, onto this space. For any S’ and any e, there exists a such that if t t,,

> ’, then the points

(-.o. ^.o ^’)

and

(-.o e61^5’, ^ ^-)

are within a distance e/2 of each other. This follows because

^ ei h)
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m" < i. Let p^ be a point on 7^ whose projection on the two-dimensional space E;2 in question is

(r^^’. ^S’),

By theorem 18, there exists a j" > such that if t t
^,

> j", then there exists a p^ e ’/’t such ttlat

d[p. p,] < e/2. But ^ cx; hence p^ eX, Also the distance between the projections of p^ and p;
must be less than e/2 provided t t > j". But the point

(-.o. ^.o ^’)

is within a distance of e/2 of the projection of pi. So it can be concluded that the point

(’i.O. ^.O ^’)

on the assigned two-dimensional subspace is within a distance e of the projection onto this space

of p, e >/’,; c x provided t t. > j". The setx is compact. This implies that all its projections

are compact and hence closed. So the point

(-..o. ^.o ^’)

is in the projection of X into the subspace in question. Since s’ was arbitrary it has been demon-

strated that on the two-dimensional subspace on which ^^
is defined, the projection of X contains

a circle centered at the origin of c and passing through the projection of pp onto this space. By the

corollary to theorem 13, X is connected, which implies that its projection sets are also connected.

These facts, together with the facts that the origin of C is in X and hence is in all projection sets

of X, and the pg was an arbitrary point ofx, imply that the projection of X onto the two-dimensional

space on which <?^ is defined, m" < i <m, is a disk.

Next, the projection of X into the complement is characterized with respect to E" of the ortho-

gonal sum of the m- m" two-dimensional subspaces on which the projections of X are disks. Let n’

be the dimension of this space, where n’ n 2(m m"). Call the space E"’. For t < t the pro-

jection of 7^ into this space can be characterized as:

7t’ fri. ^. ZL -I- 0!. ^- ^ r." e." ^". ^")

z! ^.O ^. ^ ^.O 6"^ ^ ^.O 6^- 1-! ^.O ^-0!

^o gl’1 ^)^ --2 ^.O 6"^ ^ ^.O ^ ^)^ -.’
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^’.o 6"6- ^. ^.o -e’1 ^)^ ^! r,,,^, e-^, 0^ ^..i.o g^i ^)^ ’n,"

^".O 6"^. 0." ^".O gn,’"1 ^)^ 0^500}
Of course, if m" m or, in other words, if there exists no two-dimensional subspaces on which the

projection of X is a disk then y^’ 7^ and E"’ E" In this case the characterization of the projec-
tion of X into E"’ is actually the characterization of X itself in E". An arc is defined in E"’ as
follows:

\ {(Zi, z,, z^, r^, 0^, r,, 0,, r^ ,) z,

z^ e-^. z, z^ e-^ z^ z^^ e-^. r, r^ e-^, 9, ^o -a;1 ^ ^
--2.0 ^. ^ 0^ -a^~l^ ^’ ^.,0 ^, ^, ^..o ^^. ^-.i

^-.l.o ^. ^-.i ^-.1,0. ^ ^-,0 ^. ^" ^",o 0 ^’e^co}

Theorem 21: The arc \ is contained in the projection of X into E"’.

Proof: For any point p e \ it is shown that for an arbitrary e > 0 there exists a point p’ eX such
that the projection of p’ into E"’ is within e of p. Let {t^lbe the sequence with the properties de-
fined in theorem 19. By theorem 18, there exists a such that if t t ., > ’, then for every
point p^ on 7^ there exists a point in X within a distance e/2 of P(

Let p be a point in ^. Then there exists an L’ such that

P (^.O 6’1-’- ^.O 6"1’1- ^.O ^’- -l.O 6"1’’- ^l.O -^^. ^.O 6’1-’. ^.O

(X2’1L’ ^n,-,O e-L’ 0.,0 -<’l L’ ^’.l.O 6’1-’. ^..!^. -H," 6"1-’. ^-)

Define the point

P^’. P,0 Ko e-1-’, z^ e-L’, z^<, e-’, r^ e-L’, 0^

g-l (t) L’, r, e-l’, 0, g;l (t)L, .- e-’-’ 0, g,,-’ t) L-)
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The points p and p^0 differ only on their m" angular coordinates. For i^m’, the difference in their

1th 6 coordinates is

l^o ^ L’ ^o +gf1 ^) !.’! L’ [gf^t) -^-!]]

for i such that m’ < i 5m", the difference in the ith 6 coordinate is

l^.o -^ g.’1 ^^’! i^’ ef^t)!

But by theorem 19, the sequence {tj has the property that for i ^m’,

f^i ^j i

and for m’ < i <_m" we have

^ (tj

Hence for a sufficiently large we can insure that if t t^ > then the difference in the cor-

responding coordinates of p and p, can be made arbitrarily small. This proves that there exists

a j" > such that if t t. > ", then the distance between p and p, is less that e/2. But p, is

in 7 which is the projection of -^ into E"’. Hence there exists a p^ e 7^ such that the projection

of pt into E"’ is p^ Since t t^ > j" > ’, there exists a p’ e X such that d[p’, pj < e/2. Hence

the distance between the projection of p’ in E"’ and the projection of p^ into E"’ P( is also less

than e/2. Hence there exists a point p’ ex, and the projection of p’ into E" is within a distance e

ofp e \. But e > 0 was arbitrary and p was an arbitrary point in ^. Hence since the projection of

X into E"’ is closed this proves the theorem.

Since for each i >m’ the 1th 6 coordinate of points on ^ is independent of the parameter ^, it is

seen that the projection of >. on E,2 is a straight line. A simpler representation of \ can then be

presented by converting r^ and 0; into rectangular coordinates z^, z^ by means of the equations

z. r^ cos^ and z,.n r; sin 0^ In that case, for any -&

z] zj,0 e zj^l "j+l.O e

^.O ’"i.O 008 0!- "j+l.O ’"i.O 81" 5!
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The parameterization of \ then takes the form

^ {(z!- ^^ ^L" -I. 0!, r2 02 ^n,- ^-) 2! ^.O 6"^ ^2,0 e^. ^
ZL-.O e"f/’ rl ’-l.O 6"6. 0! ^l.O 0!"1^ ^.O 6"^ ^,0 a2-u r^

^’.o ^ ^n- ^-.o a,:’1 ^ 0 i - 1 co} L’ L + 2(m"-m’)

Theorem 20 states that on certain two-dimensional subspaces E.2, m’ < i 1m", the projection of x is
a disk. Theorem 21 together with the arbitrariness of pg e X shows that on the complement space
E"’ with respect toE" of the orthogonal sum of these two-dimensional subspaces, the projection of
X is the union of arcs with parameterization similar to \.

Theorem 22: Let X be a regular Euler set in E". Then with the proper choice of coordinate
set there exists an orthogonal set of D’ two-dimensional subspaces, O^D’ 1 n/2 on each of which
the projection of X is a disk. Furthermore, there exist D nonzero numbers, a;, ilD, a. ^ 0, such
that on the complement space of E"’ of the orthogonal sum of the D’ subspaces on which the pro-
jection of X is a disk, called E"’, the projection of X can be represented as the union of arcs that,
with properly chosen cylindrical coordinates, can be parameterized as

k {( z!. ^ ^L. ^ ^l. ^2. ^D z! ^.O 6^. ^ ^.O ^. ^L

^.o 6^ ^ ^1,0 e-^ ^.o S ^. ^ r^ e-^. e,

0,^ a^, ^ r^ e-^ 0^ a^ 0 I L ^ CO^
where

{Z1,O Z2,0’ zl..0 ’l.O- el.0’ ’2,0’ ^a.O- ’-D.O- ^D.o

are the coordinates of a point in E"’ which is the projection of a point pg e X.

This theorem has some important implications.

Corollary 1: Let x be a regular Euler set in E2. Then there exists an ^ 0 and a suitable
coordinate set such that X can be represented as the disjoint union of arcs of the form

^ {(r, 0) ^e-^. e 0,, a-l -e 0^^co}
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where

(r,,, 0j e X

Proof: H X is a regular Euler set in E2, then the integer D’ associated with X as defined in

theorem 22 must be zero. This follows because otherwise X would be a disk and hence starlike.

Theorem 22 then implies that either X is represented as the union of rays

{(^ ^) ^ ^.o ^. ^ ^.a ^ 0 ^^}

or as the union of sets of the form

{(r, 9) r i-o e-^ e 0y a-U 0 -6 ^co}

The first possibility can be ignored since this would also make X starlike. This completes the

proof.

Corollary 1 constitutes a characterization of Euler sets in E2 since any set representable in

the fashion indicated in the statement of the corollary can readily be shown to be an Euler set. The

following theorem is the major result of this section.

Theorem 23: Let X be a regular Euler arc in E". There exist D nonzero numbers o^ a^, a^,

and a coordinate set c such that relative to c, X can be given the cylindrical coordinate parametric

representation

X {(^, z,, z^, r^, ^, r,, 0,, r^, 0j z, z^ e-^, z, z, g e-< z^

-L.O ^^l ^O ^. 0! ^O ^ ^. ^ T ^’ 0. ^,0 a2 l^ ^
^.O ^^D ^,0 ^"^ O^co}

where

(^.O ^.O- -^.O- ’"l.O’ el,0 ^2,0 ^2,0 ’’D.O- 0E,o}

are the cylindrical coordinates of a point in X relative to c.
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Proof: Letx be a regular Euler arc inE" Then there exists a regular S-homotopy H Xal -X

on X. There exists a coordinate set c and a tg e. i such that if t < tg, then with respect to c, f H X

(R) t-x has the canonical representation of theorem 15. There exist D two-dimensional subspaces
relative to c such that f^, t < tg, on each of these subspaces is the composition of a rotation and a

contraction. According to theorem 20, the projection of X onto some of these two-dimensional sub-

spaces may be a disk. But this is not possible. Let i ID and consider the 1th two-dimensional

subspace E^2 on which f^, t < tg, is a contraction composed with a rotation. It can be shown that

the projection of X on this subspace is not a disk.

Since X is an arc let r[l -E" be a parameterization function. It is assumed that the function

T is one to one. The map f^ is a transformation from X into X. Hence the composition map

e^ T^ f^ is a well defined continuous transformation from I into I. Let the point L’ e l be such

that T(L’ ) is the origin of the coordinate set C. If t < tg, e^ (L’ ) L’ since for t < tg, T(L’ ) is the

unique fixed point of f Also if -t / L’, e^ (-) / L. Also notice that if t is sufficiently small, K^
is nonzero and hence e^ is one to one. These results imply that by choosing a sufficiently small t

in order to insure that f is sufficiently close to the identity map in the function space S(X), it is

certain that the following conditions are satisfied:

1. e^ maps the interval [0, L’) into [o, L’) and for all -t e [0, L’), e^ (-6) >L.

2. e^ maps the interval (L’, 1] into (L’, 1] and for all -I e (L’, l] e^ (-) <-

Now consider the subarc [r(-C) -f, e [o, L’)] X Define R^ (-t) and 0.^ (^) to be the 1th r and e
coordinates of T(-t). The projection of the point T^ e x^, on E; is (R^ (^ ), e

^ (-^ )) It will be

shown that the projection function on X^ is one to one by showing that the function R^ is monotone

decreasing. This will be done by demonstrating that the function R^ has the property that for all

-^ e [0, L’) there exists an ^ such that -^ <^, and if -t is such that -^ <- <-;,, then R; (-CJ > R; (t).

Let t’ e I be such that if t <_ t’ then e^ satisfies conditions one and two. Also, for every point

p e X, let 0 be the orbit of p under the S-homotopy H X (R) l X According to the first condition, for

all -& e [0, L’) e^ (’) > -t. Then for every p e X, there exist -t, -^ e [0, L’) such that ^ < -t, and

r(-ej p and T(-C^) f^, (p) If -Ie [o, L’] is such that ^ <-t <-&2, then because the orbit of p. Op,
is connected, there exists a t e [o, f] and r(-C) f^ (p). If the i^ R coordinate of T(-C^) is R^,
then the 1th R coordinate of -r(^) is K^ R; (-t) and we have R^ (^) > R^ (-). This implies that the

function R^ is monotone decreasing and hence the projection of x^ on E.2 is a one to one map. But
a one to one map cannot raise dimension. Thus it is shown that the projection of x^ on V,.2 is one

dimensional.

Define the subarc x^ as

X, [r(^) ^ e (L’, 1]]

By the same reasoning we can show that the projection of x^ on E^2 is one dimensional. But the

projection of the arc x^ onto E^2 is the union of the projections of x^ x^, and the origin, r(L’). Hence
the projection ofx onto E.2 is one dimensional and cannot be a disk.
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The result then follows from theorem 22. Since the number D’ in the first part of the statement

of theorem 22 must be zero, the second part of the statement of theorem 22 indicates that the arc

X relative to C has the parametric representation

X {( ^, z,, z^, r^, ^, r,, 0^. ^. 0^) z, z^ e-^. z,

z^ e-^ z, z^ e-^ r, r^ e-^. O, ^o ^ -t. r,

^.O ^. ^ ^2,0 a2 ^’ ^ ^O 6"^ ^D.O "D -^ 0^"}

where

(zl,0 Z2,0 ZL,0 ’’l.O’ ^l.O’ ^.O’ 92,0 ’’D.O’ ^D.o)

are the coordinates of a point in X.

Theorem 23 provides the promised generalization of Euler’s result concerning twice differ-

entiable regular Euler arcs in E2 to a characterization of all regular Euler arcs in E".

S-EXPANDABLE SETS

In definition 3, the concept of an S-shrinkable set was introduced. The purpose of this defini-

tion was to provide a mathematical model for the inituitive concept of a shape preserving shrink-

ing of a set into itself. In a similar fashion, a mathematical model will be provided of the intuitive

idea of a shape preserving expansion of a set. It will then be proved that in a wide class of metric

spaces, the class of sets expandable in a shape preserving fashion is identical to the set of sets

which are shrinkable in a shape preserving fashion.

Let X be a subset of a metric space M. Before discussing the meaning of a shape preserving

expansion of X a definition is needed.

Definition 13: Let f be a map from X into M. The map f is an expansive S-map if there exists

a K > 1, such that for any x e X, y e X, then

d[f(x), f(y)] Kd[x, y]

As in the case of a contractive S-map, an expansive S-map on a subset of a complete metric

space has a unique fixed point provided its scale K is greater than one.
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Definition 14: A subset x of a metric space M is canonically S-expandable if there exists a
homotopy H X(R) I -m such that H xo "m is the identity map on X and for all T e (0, l] H xo t -m

is an expandable S-map. Also if t e i,

H[X(R)t] c H[X(R)1]

Definition 15: A subset Y of a metric space M is S-expandable if there exists an S-map between
Y and a canonically-expandable subset X of M.

This seemingly convoluted manner of defining S-expandable sets was used for the following
reason. Intuitively, the property of S-expandablity is related only to the shape of the set, not to
metric properties which are not properties of "shape," i.e., the diameter of a set. This is the
reason for the distinction between S-expandable sets and canonically S-expandable sets. For in-

stance, if a subset X of a metric space M has the same finite diameter as M, it cannot be canonically
S-expandable in spite of the fact that its points may exhibit the same set of metric ratios and hence
have the same "shape" as a subset of M which is canonically S-expandable. The above definition of
S-expandability clearly removes this difficulty.

Theorem 24: A subset X of a metric space M is S-expandable if and only if it is S-shrinkable.

Proof: It is shown that if a subset X of a metric space M is S-shrinkable, it is S-expandable.
The demonstration that if X is S-expandable, it is S-shrinkable is quite similar and will be omitted.

IfX is S-shrinkable, there exists an S-homotopy H xl ^x. Again, for all t e [0, I], define
f H x<t -x The proof is complete if we show that f^ [x] is canonically S-expandable. We
lose no generality in assuming that f^ [x] is not a single point and furthermore, that for t e [0, 1),

K^ >K^ For t e [o, 1] define g^ f^ f^. The map g^ has f^ [x] as its domain and being the

composition of two S-maps is itself an S-map. Also its scale is K^/K^ which is greater than one.
Hence, g^ for t e [0, l] is an expansive S-map. An S-homotopy on f^ [x] is constructed by stating

g^ G f^ [x] a t-m. This defines a map G from f, [x] 8 l into M. The map G is an S-homotopy on

f^ [x] in which the maps of the homotopy are expansive S-maps and clearly gg is the identity map
on f^ [x] Hence, according to definition 14, f^ [x] is canonically S-expandable and X is S-expandable.

A CHARACTERIZATION OF REGULAR EULER SETS IN E3

Theorem 22 represents a powerful result on the structure of regular Euler sets in E". With

the aid of this theorem a complete characterization of regular Euler sets in E2 can be readily ob-

tained. With considerably more difficulty, theorem 22 can be used to characterize regular Euler

arcs in E". These results represent substantial generalizations of Euler’s classical results dis-

cussed previously. At this point it is convenient to discuss what meaning these abstract results

may have in E3. Specifically, there is the question of what shapes are permitted to an object in E3
which can exhibit a shape preserving growth or a shape preserving shrinking. Theorem 24 indicates
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that this constitutes not two questions but one. The question is answered by providing a charac-

terization of regular Euler sets in E3.

Theorem 25: Let X be a regular Euler set in E3. Then X can be represented as the union of

arcs that, with a properly chosen cylinderical coordinate set, can be parameterized as

\ {(z, r, 0) z Zg e-^. r r^ e-^, 6 0g a-U 0 l-Cl"}

where is a positive number and (zg, 1-3, ej are the coordinates of a point inx.

Proo/: Since by hypothesis X is a regular Euler set in E3, there exists a regular S-homotopy

H X 81 X such that for t < t g, where tg is a fixed point in I,

f H [x a t x]

has the canonical representation of theorem 16. This means that there exists a coordinate set c

and a cylindrical coordinate representation (z, r, 0) of points in E3 such that if t < tg then ^ can be

represented as

f, [(z, r, (?)] (ZK,, rK,, @ +0j

where K^ is the scale and <^ is the rotational coefficient of f^. Define

^g(t) -En

^
t < t g. It will be shown that

lim g(t) / 0
t-O

This will imply that the symbol D’ in the statement of theorem 22 is zero and an invocation of

theorem 22 concludes the proof.

Let P be an arbitrary point in X; let its cylinderical coordinates relative to c be (zg, i-g, @J
We define a set /3 as follows;

/Sp -f(z, r, 0) O^z^Zg, r y- z, 0 0 <.2rT^
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Intuitively, /3p is a cone with apex at the origin of c and containing P. It is shown that if

lim g(t) 0
t^O

then /3p c x. As in the section entitled "S-Expandable Sets," for every t < t define an arc 7 as

7t {(z, r, 0) z Zo e-^. r ! e-^, 0 6>g g-l (t) -6 0 ^- ^co}

Notice that -y^ c /3p. Let -r^ (-{,) be the parameterization function of 7^. Let p’ be an arbitrary point
in /Sp with coordinates relative to c of (z’, r’, 6’). Define

<, (e’ -^^ eCO

and let the cylinderical coordinates of U \ be represented as (z 0 L It is shown that
n,t’ n,t n,t

for any > 0, there exists a t’ < tg such that for any t < f there exists an integer n such that the
distance between r^ (-6^) and P’ is less than e. Clearly, for all n,

^ ^ e-^2-)^, ^ ^ ,-(-o-)^ ^
,,

For every t < tg there exists a unique n(t) such that

7 > ,’ > 7
n(t),t "n(t)+l,t

and

> r’ >
n(t),t n(t)+l,t

For any n, the distance between z^^
and z^^

can be shown by simple manipulations to be

z^e^^ lj e^’"^2"77)^

By definition

K,
g(t) -In ^- < 0
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This implies that for a given t’ < tg

-x [|z^, z^,|] zje^) l]

Also by similar reasoning

"- [i r^ r^,]] ^ [^B(t) 1]

If it is assumed that

lim g(t) 0
t-O

then it is clear that for given any e > 0, there exists a t’ < tg such that for some n’,

r’ < e
,t’

and

z’ < e
,t

and

l^n-.t -01 "

Since U \ e 7 ,, by choosing a sufficiently small t, a point in -y^ is within a preassigned value

e of the arbitrary point P’. But according to theorem 18, for any value e, there exists a t’ such

that if t < t’, then every point of 7^ is approximated within e by a point in x. Hence it is clear that

every point in /o can be arbitrarily closely approximated by a point in X. Since x is closed, this

implies /3 c x. Because the point P e X was arbitrary, X is starlike and thus contradicts the assump-

tion that X is an Euler set. Hence

lim g(t) ^ 0
t-O

and the theorem is proved.
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Theorem 25 shows that any object in E3 that is shrinkable or expandable in the manner defined

by definitions 3 or 15 is either starlike or has the representation given in the statement of theorem

25. The shape defined by theorem 25 is a common geometric form in nature and it is encountered

in sciences as diverse as biology and astronomy. It is hoped that the results of this study will be

of use in explaining the presence of this shape in some situations. For instance, it may be of some

survival value for an organism to grow in a fashion that approximately preserves its original

shape. If other considerations rule out a starlike shape for the organism, then the natural selection

process could lead to a shape approximating the Euler set characterized for E3 by theorem 25. The

shells of several snails, for instance, form facsimiles of Euler sets. There are many other bio-

logical examples. Applications of the results of this paper to the explanation of the appearence of

the Euler set geometric form in other disciplines such as astronomy are also possible.
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